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Abstract
This paper is devoted to the construction of new integrable quantum-mechanical
models based on certain subalgebras of the half-loop algebra of glN . Various
results about these subalgebras are proven by presenting them in the notation
of the St Petersburg school. These results are then used to demonstrate the
integrability, and find the symmetries, of two types of physical system: twisted
Gaudin magnets and Calogero-type models of particles on several half lines
meeting at a point.

PACS numbers: 02.30.Ik, 03.65.Fd, 75.10.Jm
Mathematics Subject Classification: 70H06, 81R12

1. Introduction

This paper has two motivations. On the one hand, we are interested in physical models of
particles on a number of half lines joined at a central point. Such systems, for free particles,
have been treated in, for example, [1, 2]. Here we would like to consider interacting models,
to establish that integrable examples of such models exist, and to find their symmetries. We
shall work out explicitly two examples: the Gaudin model [3] and the Calogero model [4].
Both have numerous applications in physics and in mathematics. For example, the reduced
BCS model for conventional superconductivity can be diagonalized in an algebraic way [5]
using the Gaudin model. Other, more recent, applications of the Gaudin model in quantum
many-body physics can be found for example in the reviews of [6, 7]. Besides being of
intrinsic interest due to its exact solvability, the Calogero model plays a role in the study of
two-dimensional Yang–Mills theory [8], the quantum-Hall effect [9] and fractional statistics
[10].

Our second motivation is algebraic. The notation of the St Petersburg School [11] is a
powerful tool when working with the Yangian [12] of glN and its subalgebras: the reflection
algebras [13, 14] and twisted Yangians [15]. These are quantum algebras, but the construction
has a classical limit in which the quantum R-matrix and Yang–Baxter equation are replaced
by their classical counterparts (see for example [16]). The classical limit of the Yangian is the
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half-loop algebra, and the limits of the reflection algebras and twisted Yangian are subalgebras
of this half-loop algebra defined by automorphisms of order 2. But there also exist, at least
in the classical case, other subalgebras of the half-loop algebra, defined by automorphisms of
higher finite order. We wish to study these subalgebras using classical r-matrix techniques.

It is well known that the half-loop algebras associated with Lie algebras are crucial in the
study of Gaudin models and Calogero models. These algebras provide, in the former case,
a systematic way to construct the model (see e.g [17]) and, in the latter case, the symmetry
algebras of the system [18–20]. In both cases, they allow one to prove the integrability of
the model. We shall find similar connections in the cases studied in this paper. Indeed, we
shall see below that the order n subalgebras of the half-loop algebra appear naturally in the
description of models on n half lines.

This paper is structured as follows. We begin with a brief review of the half-loop algebra
of glN and its subalgebras associated with automorphisms of order n. We make use of the
notation of the St Petersburg school to find Abelian subalgebras. In the subsequent sections,
these algebraic results are shown to provide new quantum-integrable models and demonstrate
their symmetries: section 3 discusses ‘twisted’ Gaudin magnets, and section 4 introduces
Calogero-type models on n half lines joined to a central point. We end with some conclusions
and a short discussion of classical counterparts of these results.

2. Half-loop algebra and subalgebras

2.1. St Petersburg notation and half-loop algebra

The half-loop algebra HN based on glN is the complex associative unital algebra with the
following set of generators:

{
t
(α)
ij

∣∣1 � i, j � N,α ∈ Z�0
}
, subject to the defining relations[

t
(α)
ij , t

(β)

kl

] = δjk t
(α+β)

il − δil t
(α+β)

kj (2.1)

for α, β � 0 and 1 � i, j, k, l � N . It is isomorphic to the algebra glN [z] of polynomials in
an indeterminate z with coefficients in glN , with the generators identified as follows:

t
(α)
ij = eij z

α, (2.2)

where eij are the generators of glN , satisfying the commutation relations

[eij , ekl] = δjkeil − δilekj . (2.3)

It will simplify our computations to introduce the notation of the St Petersburg school:
let Eij be the N × N matrix with a 1 in the ij th slot and zeros elsewhere. These are the
generators of glN in the fundamental representation. Let us now gather the generators of HN

in the matrix

T (u) =
N∑

i,j=1

Eij ⊗
∑
α�0

t
(α)
ji

uα+1
=

N∑
i,j=1

Eij ⊗ Tji(u) =
∑
α�0

T (α)

uα+1
, (2.4)

where T (α) = ∑N
i,j=1 Eij ⊗ t

(α)
ji (α � 0) and u is a formal parameter called the spectral

parameter. Note the flip of the indices between Eij and tj i , which will prove convenient later.
The algebraic object T (u) is an element of MatN×N ⊗ HN [[u−1]], and as usual we refer to
MatN×N as the auxiliary space and HN as the algebraic space. In what follows, we shall
require several copies of both spaces. We use letter a, b, . . . from the start of the alphabet to
refer to copies of the auxiliary space and numerals 1, 2, . . . for copies of the algebraic space.
Let us also introduce

rab(u) = Pab

u
, (2.5)
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where Pab = ∑N
i,j=1 Eij ⊗ Eji is the permutation operator between two auxiliary spaces:

the letters a and b stand respectively for the first and the second spaces. By the definition,
it satisfies Pabv ⊗ w = w ⊗ v (v,w ∈ CN). The matrix rab(u), usually called the classical
R-matrix (see for example [16]), satisfies the classical Yang–Baxter equation

[rab(ua − ub), rac(ua − ub)] + [rab(ua − ub), rbc(ub − uc)]

+ [rac(ua − uc), rbc(ub − uc)] = 0 (2.6)

and allows us to encode the half-loop algebra defining relations (2.1) in the simple equation

[Ta(u), Tb(v)] = [Ta(u) + Tb(v), rab(u − v)]. (2.7)

This form of commutation relations can be obtained easily by taking the classical limit of the
presentation of the Yangian of glN [12] introduced by Faddeev, Reshetikhin and Takhtajan of
St Petersburg [11]. By taking the trace in the space a in (2.7), it is straightforward to show
that the coefficients of the series t (u) = traTa(u) are central. The quotient of the algebra HN

by the relation t (u) = 0 is isomorphic to the polynomial algebra slN [z].
Identification (2.2) between the generators of HN and glN [z] now reads

Ta(u) = Pa1

u − z
, (2.8)

where

Pa1 =
N∑

i,j=1

Eij ⊗ eji, (2.9)

and 1
u−z

is to be understood as the formal series
∑

α�0
zα

uα+1 . Note the similarity between
relations (2.5) and (2.8): the only differences are that the second auxiliary space (denoted b)
in (2.5) is replaced by an algebraic space (denoted 1) and that the spectral parameter is shifted
by z. In fact, there exists a more general solution of relations (2.7) in the L-fold tensor product
of glN [z],

Ta(u) =
L∑

�=1

Pa�

u − z�

. (2.10)

From now on, we work in the enveloping algebra U(HN) in which, for example, the product
Ta(u)2 makes sense.

2.2. The inner-twisted algebras

Let σ be an inner automorphism of glN of order n. One way to define σ is by its action on
matrices X ∈ MatN×N in the fundamental representation:

σ : X �→ G−1XG, (2.11)

where G ∈ MatN×N satisfies Gn = 1; the action of σ on the abstract algebra glN is then given
by σ : eij �→ Gjq(G

−1)piepq , or, in the notation of the previous section,

σ : Pa1 �→ GaPa1G
−1
a . (2.12)

The eigenvalues of σ are the nth roots of unity τ k := exp 2π ik/n, and for each
k ∈ Zn := Z

nZ
the map

Pk = 1

n

∑
j∈Zn

τ−jkσ j (2.13)
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is the projector onto the τ k eigenspace:

σPk = τ kPk, PkPj = δjkPk. (2.14)

Since 1 = P0 + P1 + · · · + Pn−1, glN decomposes into the direct sum of eigenspaces of σ . This
decomposition respects the Lie bracket, in the sense that if σe = τ ke and σf = τ lf then

σ [e, f ] = [σe, σf ] = τ k+l[e, f ], (2.15)

and is said to be a Zn-gradation of glN .
By a change of basis we can take

G = diag(1, . . . , 1︸ ︷︷ ︸
N0

, τ, . . . , τ︸ ︷︷ ︸
N1

, . . . , τ n−1, . . . , τ n−1︸ ︷︷ ︸
Nn−1

), (2.16)

where N0 + N1 + · · · + Nn−1 = N . Note that the +1-eigenspace of σ is the Lie subalgebra
glN0

⊕ glN1
⊕ . . . ⊕ glNn−1

.
Let us define

glN [z]σ = {A(z) ∈ glN [z] | σA(z) = A(τz)}, (2.17)

that is, glN [z]σ is the subalgebra of glN [z] in which each element of degree k is also in the
τ k-eigenspace of σ . There is a surjective projection map glN [z] → glN [z]σ , defined by
ezk �→ Pkez

k . In view of (2.12), this sends

T (u) �→
∑
j∈Zn

τ jGjT (uτ j )G−j =: B(u), (2.18)

which defines the formal series B(u) whose expansion

B(u) = 1

u
B(0) +

1

u2
B(1) + · · · , (2.19)

contains by construction a complete set of generators of glN [z]σ .

Lemma 2.1. B(u) obeys

[Ba(u), Bb(v)] =
∑
k∈Zn

[
τ kBa(u) + Bb(v),

G−k
a PabG

k
a

u − τ kv

]
(2.20)

and has the property that for all k ∈ Zn

B(u) = τ kGkB(uτ k)G−k. (2.21)

Proof. The first of these is true by virtue of (2.7), while the second follows immediately from
definition (2.18). �

The coefficients in the expansion of b(u) = tr B(u) are central in glN [z]σ , as may be seen
by taking the trace in space a or b in (2.20). But there exist also other Abelian subalgebras in
U(glN [z]σ ) as follows.

Proposition 2.2. The coefficients in the expansion of b′(u) = tr B(u)2 are mutually commuting,
or equivalently

[b′(u), b′(v)] = 0, (2.22)

for all values of u and v. Moreover, they commute with the generators of glN [z]σ of degree
zero:

[B(0), b′(u)] = 0. (2.23)

The algebraic elements in B(0) generate glN0
⊕ glN1

⊕ · · · ⊕ glNn−1
.
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Proof. The details of the proof are given in appendix A. �

In particular, we recover (for n = 1) the fact that tr T (u)2 commute and (for n = 2) the
results of Hikami [19] concerning the classical limit of the reflection algebra.

In sections 3 and 4, we will apply this purely algebraic result to find new integrable
models.

2.3. Outer automorphisms

In the previous section, we focused on inner automorphisms. Now, we show how to modify
the construction to study outer automorphisms. Modulo inner automorphisms, the only outer
automorphism of glN , are generalized transposition, which have order 2.

Let K be a real invertible N ×N matrix satisfying Kt = ηK with η = ±1 (for η = −1, N

must be even), and define an outer automorphism T by eij �→ Kjp(K−1)qiepq , or equivalently

T : Pa1 �→ P
Ta

a1 = KaP
ta
a1K

−1
a =: Qa1, (2.24)

where ta is matrix transposition in the space a. The eigenvalues of T are ±1 and, as before,
the decomposition of glN into the direct sum of eigenspaces of T defines a Z2-gradation.

One may introduce the N × N matrices

G+ = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

) and G− = diag(1, . . . , 1︸ ︷︷ ︸
N/2

) ⊗
(

0 1
−1 0

)
, (2.25)

where p + q = N and the second case is valid only for N even. Then a well-known result in
linear algebra is that K is congruent over the reals to Gη, i.e. UKU t = Gη for some real matrix
U . From this one sees that the +1-eigenspace of T is the Lie subalgebra so(p, q) for η = +1
and sp(N) for η = −1.

Once more we may now define

glN [z]T = {A(z) ∈ glN [z] | T A(z) = A(−z)}, (2.26)

that is, the subalgebra of gln[z] in which each element of degree k is also in the (−1)k-
eigenspace of T . The projection map glN [z] → glN [z]T is ezk �→ 1

2 (1 + (−1)kT )ezk , and,
given (2.24), this sends

T (u) �→ T (u) + T (−u)T =: S(u), (2.27)

which defines the formal series S(u), whose expansion in inverse powers of u

S(u) = 1

u
S(0) +

1

u2
S(1) + · · · (2.28)

contains a complete set of generators of glN [z]T . The commutation relations of this subalgebra
can be written simply by using the notation with the formal series.

Lemma 2.3. S(u) obeys

[Sa(u), Sb(v)] =
[
Sa(u) + Sb(v),

Pab

u − v

]
+

[
Sa(u) − Sb(v),

Qab

u + v

]
, (2.29)

where Qab = P
Ta

ab = P
Tb

ab and has the symmetry property that

S(u) = S(−u)T . (2.30)

Proof. The first of these is true by virtue of (2.7) and the second is immediate from
definition (2.27). �
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Note that these commutation relations can be obtained from the classical limit of the
twisted Yangian introduced in [15]. More abstractly, relations (2.29) and (2.30) can be
regarded as defining an algebra, which can then be seen to be embedded in the half-loop
algebra according to (2.27).

It is well known that the centre of this subalgebra is generated by the odd coefficients of
the series s(u) = tr S(u) (see for example [21, section 4]). But we have also

Proposition 2.4. The quantities in the expansion of s ′(u) = tr S(u)2 are mutually commuting,
or equivalently

[s ′(u), s ′(v)] = 0, (2.31)

for all values of u and v. Moreover,

[S(0), s ′(u)] = 0. (2.32)

The elements in S(0) generate so(p, q) for η = +1 and sp(N) for η = −1.

Proof. The details of the proof are given in appendix B. �

3. Gaudin models

3.1. The inner-twisted Gaudin magnets

The quantum-Gaudin magnet, introduced in [3], is an integrable spin chain with long range
interactions. The Gaudin Hamiltonians for the model with L sites are

Hk =
L∑

j=1
j �=k

Pjk

zj − zk

, (3.1)

where zi are complex numbers. (Recall that Pjk permutes the j th and kth spins.) This model
is usually called the AL-type Gaudin model. It may be obtained from the more general class
of integrable Hamiltonians

Hk =
L∑

j=1
j �=k

traPakPaj

zk − zj

(3.2)

by specifying that the spin at each site j is in the fundamental representation of glN .
Now, given proposition 2.2 above, we can obtain new integrable models, as in the following

proposition. These models describe spins placed at fixed positions in the plane, each of which
interacts with the central point and with the other spins, not only directly, but also via their
images under the rotation group of order n.

Proposition 3.1. The model described by any one of the Hamiltonians

H
(n)
k =

L∑
j=1
j �=k

∑
p∈Zn

traPakG
−p
a PajG

p
a

zk − τpzj

+
∑

p∈Zn,p �=0

traPakG
−p
a PakG

p
a

2zk

(3.3)

is integrable. This model has glN0
⊕ glN1

⊕ · · · ⊕ glNn−1
symmetry.

Proof. From definition (2.18) of B(u), one finds

b′(u) = tr B(u)2 =
L∑

k=1

∑
j∈Zn

τ j

u − τ−j zk

H
(n)
k +

L∑
k=1

∑
j∈Zn

traPakPak

(u − τ−j zk)2
, (3.4)
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with H
(n)
k as given in the proposition. (The identity

1

(u − τ−j zl)(u − τ−kzp)
= 1

τ−j zl − τ−kzp

(
1

u − τ−j zl

− 1

u − τ−kzp

)
(3.5)

for (j, l) �= (k, p) is helpful in showing this.)
It then follows from proposition 2.2 that

[
H

(n)
k ,H (n)

p

] = 0. Since (for n > 1)
these operators H(n)

p are independent we have found L commuting conserved quantities,
completing the proof of integrability of the Hamiltonian H(n). Next, from the relation
[B(0), tr B(u)2] = 0, also proved in proposition 2.2, we deduce that [B(0), H (n)] = 0, which
gives the glN0

⊕ glN1
⊕ · · · ⊕ glNn−1

symmetry of the model. �

Examples:

• For n = 2, we obtain the Hamiltonian

H
(2)
k =

L∑
j=1
j �=k

(
traPakPaj

zk − zj

+
traPakGaPajGa

zk + zj

)
+

traPakGaPakGa

2zk

(3.6)

of the BC-type Gaudin model studied in [19].
• If the sites carry the fundamental representation of glN , our Hamiltonian is

H
(n)
k =

L∑
j=1
j �=k

∑
p∈Zn

G
p

j PkjG
−p

j

zk − τpzj

+
∑

p∈Zn,p �=0

G
−p

k tr Gp

2zk

. (3.7)

Let us remark that in the AL case (n = 1) supplementary conserved quantities, called
higher Gaudin Hamiltonians, can be found by computing for example tr T (u)3 (see e.g. [22]).
The question of whether this is possible in the generalized cases (n �= 1) studied here remains
open.

3.2. The outer-twisted Gaudin magnets

Using the algebraic result of proposition 2.4, we can also succeed in constructing integrable
models based on outer automorphisms, as follows.

Proposition 3.2. The model described by any one of the Hamiltonians

H
η

k =
L∑

j=1
j �=k

(
traPakPaj

zk − zj

+
traPakQaj

zk + zj

)
+

traPakQak

2zk

(3.8)

is integrable. The model has so(p, q) symmetry (resp. sp(N) symmetry) for η = +1 (resp.
η = −1).

Proof. The proof is similar to that of proposition 2.2. Using definition (2.27) of S(u), we
show that

s ′(u) = tr S(u)2 =
L∑

k=1

4zk

(u − zk)(u + zk)
H

η

k +
L∑

k=1

traPakPak

(
1

(u − zk)2
+

1

(u + zk)2

)
, (3.9)

with H
η

k given as in the proposition. Then, we deduce from proposition 2.4 that
[
H

η

k ,H
η
p

] = 0,
and since the operators H

η
p are independent for different p, this proves the integrability of Hη.

The symmetry algebra is deduced from [S(0), tr S(u)2] = 0 proved in proposition 2.4. �
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Every choice of representation V1 ⊗ · · · ⊗ VL for the sites then yields a Gaudin-type
model. (It is worth remarking that it is possible to choose different representations at different
sites.) For example, in the fundamental representation of glN , the Hamiltonian is

H
η

k =
L∑

j=1
j �=k

(
Pkj

zk − zj

+
Qkj

zk + zj

)
+

η

2zk

. (3.10)

We may interpret Hη as a Gaudin model with boundary as in the BC-type model
(equation (3.6), and see also [19]). The zk + zj term in (3.8) corresponds to the interaction
between the kth spin represented in Vk and the j th ‘reflected’ spin transforming in the
contragredient representation. This type of boundary is called soliton non-preserving and
has been implemented in other integrable models [23–26]. The final term in (3.8) corresponds
to the interaction between particles and the boundary.

4. Calogero models

We turn now to the second class of integrable system of interest in this work, the Calogero
models. We seek to construct dynamical models of multiple particles on a star graph, whose
pairwise interactions are determined by a potential of the usual Calogero type, namely 1/q2,
where q is the linear distance separating the particles in the plane of the star graph. We will first
construct models of particles of unspecified statistics; subsequently, by specifying statistics
and parity, we arrive at Calogero models for particles with internal spins.

4.1. The AL case

Let us first recall the Calogero model based on the root system AL [4], and in particular
the use of Dunkl operators [27] in demonstrating its integrability [18]. Consider a quantum-
mechanical system of L particles on the real line. Let qi be the position operator of the ith
particle, and write the position-space wavefunction as

ψ(q1, q2, . . . , qL). (4.1)

Let Pij = Pji be the operator which transposes the positions of particles i and j ,

Pijψ(. . . , qi, . . . , qj , . . .) = ψ(. . . , qj , . . . , qi, . . .). (4.2)

Let us denote by SL the permutation group of L elements and by (ij) the transposition of the
elements i and j . Each element s ∈ SL can be written in terms of transpositions, namely
s = (ij) . . . (kl). Then, we can define Ps as the shorthand for the product Pij . . . Pkl (even
though the expression of s in terms of transpositions is not unique, Ps is well defined due to
the commutation relations satisfied by Pij ). The sign of s, denoted by |s|, is the number of
these transpositions modulo 2.

Let us define L operators di—the Dunkl operators—by [28, 29]

di = pi + λ
∑
j �=i

1

qi − qj

Pij , where pi = −ih̄
∂

∂qi

. (4.3)

It follows from the relations Pij qj = qiPij that the Dunkl operators commute with one
another,

[di, dj ] = 0 (4.4)
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and consequently that the quantities

I (k) =
L∑

i=1

dk
i (4.5)

also form a commuting set. The I (k) are algebraically independent for k = 1, 2, . . . , L, and
these give L commuting conserved quantities of the model with Hamiltonian

H = I (2) =
L∑

i=1

d2
i =

L∑
i=1


p2

i −
∑
j �=i

1

(qi − qj )2
λ(λ − ih̄Pij )


 , (4.6)

which is therefore, by construction, integrable.
The next step is to consider particles with internal degrees of freedom, which we take to

be in the fundamental representation of glN . The wavefunction becomes

ψ(q1, q2, . . . , qL | v1, v2, . . . , vL), (4.7)

where vi ∈ CN . As we define operators Pij which transpose the positions, we introduce an
operator Pij which transposes the spins

Pijψ(q1, . . . , qL| . . . , vi, . . . , vj , . . .) = ψ(q1, . . . , qL| . . . , vj , . . . , vi, . . .). (4.8)

We define similarly to Ps the matrix Ps = Pij . . . Pkl for s = (ij) . . . (kl) acting on the spins.
As explained before, to use the St Petersburg notation, we need supplementary spaces

called auxiliary spaces (which are CN and, in this case, isomorphic to the quantum space) and
denoted by the letters a, b, . . . . The conserved quantities (4.5) then emerge in a natural way
from the matrix

Ta(u) =
L∑

�=1

Pa�

u − d�

, (4.9)

because (as one can see using traPa� = 1)

t (u) = traTa(u) =
∞∑

k=0

I (k)

uk+1
. (4.10)

Here (4.9) is nothing but a modified version of the monodromy matrix (2.10). The
parameters z� are replaced by the Dunkl operators, and since the quantum spaces are chosen
to be in the fundamental representation, Pa� = Eij ⊗ eji becomes the transposition operator
Pa� = Eij ⊗ Eji (for � = 1, . . . , L). Now because di commute with each other and with all
operations on the internal degrees of freedom, T (u) obeys the half-loop algebra relations (2.7)
exactly as before.

Suppose, finally, that the particles are in fact indistinguishable, which is often the case of
real physical interest. One must then impose definite exchange statistics on the wavefunction:

PijPijψ = εψ, (4.11)

where ε = +1 for bosons and ε = −1 for fermions. The projector onto such states is

 =
∑
s∈SL

ε|s|PsPs. (4.12)

The following relation

( − 1)T (u) = 0 (4.13)

demonstrated in [18] is crucial, because it implies that the modified generators T̃ (u) = T (u)

preserve the condition ψ = ψ , and obey the same algebraic relations as the original T (u).
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Figure 1. A particle on the branch R+, and its images on the other branches.

From T̃ (u), we may define t̃ (u) = traT (u) = t (u), and hence Ĩ (k) = I (k). Using
[̃t(u), t̃(v)] = 0, one obtains that the Ĩ (k) are once more L commuting conserved quantities of
the system with Hamiltonian

H̃ = Ĩ (2) =
L∑

i=1

d2
i  =

L∑
i=1


p2

i −
∑
j �=i

λ(λ − ih̄εPij )

(qi − qj )2


 , (4.14)

where we are now able to replace P , which acts on particle positions, by P, which acts only
on the internal degrees of freedom. Moreover, since t̃ (u) commutes with T̃ (u), the model has
a half-loop symmetry algebra.

The subtlety in all this is that the Dunkl operators themselves do not obey any relation
analogous to (4.13). There are thus essentially three steps in this procedure to construct an
integrable Hamiltonian for a system of indistinguishable particles

(1) find commuting Dunkl operators, and hence T (u),
(2) construct the appropriate projector  onto physical states and
(3) prove the relation ( − 1)T (u) = 0.

4.2. Dunkl operators for the order n inner-twisted case

We can now turn to applying these ideas to the model of interest isn the present work. We
consider a system of L particles living on n half lines—‘branches’—joined at a central node,
as in figure 1. The branches are given parametrically by z = τ kt, t > 0, k ∈ Zn, and we shall
denote them by

R+, τR+, . . . , τ n−1R+. (4.15)

As before, let qi be the position operator of the ith particle. (Note that the spectrum of qi is
not real, but only for the superficial reason that we choose to regard the half lines as subsets of
the complex plane.) In addition to the Pij , which exchange particle positions, we can define
now new operators Qi which move the particles between branches

Qiψ(. . . , qi, . . .) = ψ(. . . , τqi, . . .). (4.16)

It is useful to collect together the algebraic relations satisfied by the qi,Qi and Pij :



Integrable models from twisted half-loop algebras 5501

PijPjkPij = PjkPijPjk, P2
ij = 1, Pij = Pji , (4.17)

Qn
i = 1, (4.18)

and

PijQj = QiPij , Pij qj = qiPij , τQiqi = qiQi , (4.19)

with all the rest commuting. To construct an integrable model, the first task is to find a suitable
generalization of the commuting Dunkl operators introduced above.

Proposition 4.1. The Dunkl operators defined by

di = pi + λ

L∑
j=1
j �=i

∑
k∈Zn

1

qi − τ kqj

Qk
i PijQ

−k
i +

∑
k∈Zn

µk

qi

Qk
i , pi = −ih̄

∂

∂qi

, (4.20)

for arbitrary parameters λ,µk ∈ C, commute amongst themselves:

[di, dj ] = 0. (4.21)

Proof. Consider first the terms at order λ. We have[
Qk

i PijQ
−k
i , pj

] = Pij (τ
kpj − pi)Q

k
jQ

−k
i (4.22)

using relations (4.19) and the definition pj = −ih̄ ∂
∂qj

, which together imply Qjpj = pjQj τ .
The two terms of this type occurring in [di, dj ] are∑
k∈Zn

1

qi − τ kqj

[
Qk

i PijQ
−k
i , pj

]
+

1

qj − τ kqi

[
pi,Q

k
jPjiQ

−k
j

]

=
∑
k∈Zn

1

qi − τ kqj

Pij (τ
kpj − pi)Q

k
jQ

−k
i − 1

qj − τ kqi

Pij (τ
kpi − pj )Q

k
i Q

−k
j

(4.23)

which cancel, after a change of the summation index in the second. The two terms containing
[pj , 1/(qi − qj )] cancel similarly. The terms occurring at order λ2 are of the form[

1

qi − τ kqg

Qk
i PigQ

−k
i ,

1

qj − τ �qh

Q�
jPjhQ

−�
j

]
. (4.24)

These vanish trivially unless at least one of the indices i, g matches at least one of j, h. It is
straightforward, though tedious, to check that the terms with exactly one index in common sum
to zero, by using relations (4.19) to bring every such term into e.g. the form 1

q−q
1

q−q
PPQQQ

and then summing the fractions directly. The terms in which both indices match give∑
k∈Zn

Qk
i Q

−k
j

∑
�∈Zn

(
1

τ−�qj − τ kqi

1

qj − τ �qi

− 1

τ k−�qi − τ−kqj

1

qi − τ �−kqj

)
, (4.25)

and here the sum over � may be re-written as

1

qi − τ kqi

∑
�∈Zn

(
1

qj − τ �qi

− 1

qj − τ k+�qi

− 1

τ−kqj − τ �qi

+
1

τ−kqj − τ k+�qi

)
, (4.26)

which then vanishes by shifting the dummy index � in the second and fourth terms. The terms
involving µk may be treated similarly. �
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These Dunkl operators have been introduced previously in [30] as Dunkl operators
associated with complex reflection groups. A proof of their commutativity is already given
but is based on different computations.

As in the AL case above, the quantities

I (k) =
L∑

i=1

dk
i (4.27)

are then mutually commuting, forming a hierarchy of Hamiltonians of an integrable system.
Their detailed forms are rather complicated, for example, in the case of n = 3 branches with
only L = 2 particles and µk = 0, we find that the first three are

I (1) = p1 + p2 + λ

(
1 − τ

q1 − τq2
Q1Q

−1
2 +

1 − τ 2

q1 − τ 2q2
Q−1

1 Q2

)
P12 (4.28)

I (2) = p2
1 + p2

2 + λp1

(
1 − τ 2

q1 − τq2
Q1Q

−1
2 +

1 − τ

q1 − τ 2q2
Q−1

1 Q2

)
P12

+ λp2

(
1 − τ 2

q2 − τq1
Q2Q

−1
1 +

1 − τ

q2 − τ 2q1
Q−1

2 Q1

)
P12

− 3λ2 q4
1 + 2q3

1q2 + 2q1q
3
2 + q4

2(
q3

1 − q3
2

)2 (4.29)

I (3) = p3
1 + p3

2 − 3λp1

(
1

(q1 − q2)2
(P12 + λ) +

1

(q1 − τq2)2

(
P12Q

−1
1 Q2 + λ

)
+

1

(q1 − τ 2q2)2
(P12Q1Q

−1
2 + λ)

)

− 3λp2

(
1

(q1 − q2)2
(P12 + λ) +

1

(q2 − τq1)2

(
P12Q

−1
2 Q1 + λ

)
+

1

(q2 − τ 2q1)2

(
P12Q2Q

−1
1 + λ

))

− 3
√

3iλ2 1

(q1 − q2)(q1 − τq2)(q1 − τ 2q2)
Q1Q2(Q1 − Q2). (4.30)

4.3. Quasi-parity and particles with spin

The next steps are to consider particles with spin and to choose a suitable projector onto
physical states. We take the latter to be the product of two parts

P Q, (4.31)

where

P =
∑
s∈SL

ε|s|PsPs (4.32)

is the projector onto states of definite exchange statistics, and

Q =
L∏

i=1

1

n

∑
j∈Zn

Qj

i G
−j

i (4.33)

is a new projector which relates the wavefunction on different branches: Giψ = Qiψ . In
the case of n = 2, this means relating the wavefunction at qi = x with qi = −x, or, in
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other words, imposing a parity condition, so we shall call analogous conditions for arbitrary n
‘quasi-parity’ conditions. The reason for requiring quasi-parity is that we would like to find a
Hamiltonian that does not involve Pij or Qj , and, just as imposing definite statistics allowed
P to be replaced by P in (4.14), so here quasi-parity will allow Q to be replaced by G, the
matrix defining the automorphism of glN .1

Now Ta(u), defined in (4.9), does not respect quasi-parity, but we have instead

Lemma 4.2.

Ba(u) =
∑
j∈Zn

τ jGj
aTa(uτ j )G−j

a (4.34)

satisfies

[Ba(u),Q] = 0. (4.35)

Proof. By direct computation. �

Thus, using also that T (u) obeys (4.13), we have

(1 − P Q)Ba(u)P Q = 0, (4.36)

and have therefore arrived at the following result

Proposition 4.3. The modified generators B̃(u) = B(u)P Q preserve the statistics and
quasi-parity of the wavefunction and themselves satisfy relations (2.20). The quantities Ĩ (k)

in the expansion of

b̃(u) = traBa(u)P Q =:
∞∑

k=0

Ĩ (k)

uk+1
(4.37)

are mutually commuting, and non-zero only when k ≡ 0 mod n. The model with this hierarchy
of integrable Hamiltonians has symmetry glN [z]σ .

Proof. Most of this follows from the construction above: it remains only to show that Ĩ (k)

vanishes for k �≡ 0 mod n. One sees this by writing

b̃(u) =
L∑

�=1

∞∑
p=0


∑

k∈Zn

τ−pk


 d

p

l

up+1
P Q (4.38)

and noting that
∑

k∈Zn
τ−pk is zero unless p ≡ 0 mod n. �

The vanishing of some of the generators is as expected: in the case n = 2, for example,
the charge I (1), which is of first order in momentum p, does not survive the introduction of a

1 Note that in fact there is another natural class of quasi-parity condition: when n = 2, ψ(. . . , qi , . . .) =
Giψ(. . . ,−qi , . . .) is obviously equivalent to ψ(. . . , qi , . . .) − Giψ(. . . , −qi , . . .) = 0, but these two formulations
suggest different generalizations to n > 2: we can on the one hand demand for all i that

ψ(. . . , qi , . . .) = Giψ(. . . , τqi , . . .) = · · · = Gn−1
i ψ(. . . , τ n−1qi , . . .)

or, alternatively, for all i

ψ(. . . , qi , . . .) + τGiψ(. . . , τqi , . . .) + · · · + τn−1Gn−1
i ψ(. . . , τ n−1qi , . . .) = 0.

We use the first type of quasi-parity here. With such a condition in force one need only give the wavefunction on
R+ in order to completely specify the state, and in this sense the model is really on the half-line. The second type of
quasi-parity is weaker—and so potentially interesting—but does not allow us to replace Q by G in the Hamiltonian.
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boundary. In the case of n = 3 with L = 2 particles, already mentioned in (4.28), the first
non-vanishing charge is of third order in momentum:

Ĩ (3) = p3
1 + p3

2 − 3λp1

(
1

(q1 − q2)2
(εP12 + λ) +

1

(q1 − τq2)2

(
εP12G

−1
1 G2 + λ

)
+

1

(q1 − τ 2q2)2
(εP12G1G

−1
2 + λ)

)

− 3λp2

(
1

(q1 − q2)2
(εP12 + λ) +

1

(q2 − τq1)2

(
εP12G

−1
2 G1 + λ

)
+

1

(q2 − τ 2q1)2

(
εP12G2G

−1
1 + λ

))

− 3
√

3iλ2 1

(q1 − q2)(q1 − τq2)(q1 − τ 2q2)
G1G2(G1 − G2). (4.39)

5. Conclusion

In this paper, we gave the St Petersburg presentation of subalgebras of the glN half-loop
algebras associated with all finite-order automorphisms of glN . This presentation allows
us to obtain commuting quantities used to prove integrability for new integrable models of
Gaudin or Calogero type. The non-Abelian symmetry for each of these new models is also
exhibited.

We may expect that the usual methods to solve the Gaudin models and the Calogero
models may be generalized to solve the models given in propositions 3.1, 3.2 or 4.3 introduced
in this paper. Namely, for the Gaudin models, the Hamiltonians (3.3) and (3.8) may be
diagonalized by generalizing the usual methods such as the separation of variables [31] or the
algebraic Bethe ansatz [32]. For the Calogero models, the previous link established in [30]
between the nonsymmetric Jack polynomials and the Dunkl operators (4.20) may be useful to
diagonalize the Hamiltonian given in proposition 4.3.

Our discussion has dealt exclusively with quantum-mechanical models. However, for
each algebra introduced in the paper, there exists an associated Poisson bracket algebra,
obtained simply by replacing the commutator on the left of the defining relations (2.1),
(2.3), (2.7), (2.20) and (2.29) by a Poisson bracket. This allows us to treat certain classical
mechanical problems. In such problems, the entries of T (u), B(u) or S(u) are commuting
functions on phase space, which simplifies many computations. For example, the results of
propositions 2.2 and 2.4 are replaced by the stronger statements

{bk(u), b�(v)} = 0 and {sk(u), s�(v)} = 0, (5.1)

where bk(u) = tr B(u)k and sk(u) = tr S(u)k . These results strongly suggest that the classical
counterpart of models given by (3.3) and (3.8) are integrable in the sense of Liouville. (It
remains to prove that the quantities are independent.)

Finally, although the models of this paper were quantum-mechanical, the algebras are
classical, in the sense that they are not q-deformed. A very interesting question is whether
a similar construction of subalgebras from higher order automorphisms of glN is possible
in the case of quantum groups. If so, then these subalgebras would be a q-deformation of
those in this paper, and should also have associated with them integrable models on n half
lines.
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Appendix A. Proof of proposition 2.2

It is convenient first to use

G−k
a PabG

k
aBa(u) = G−k

a Gk
bBb(u)Pab = Gk

bBb(u)
(
G−k

b Gk
b

)
G−k

a Pab

= Gk
bBb(u)G−k

b G−k
a PabG

k
a,

and similar manipulations, to re-write the commutation relations (2.20) as

[Ba(u), Bb(v)] =
∑
k∈Zn

(Bb(v) + τ kBa(u) − τ kBa(τ
kv) − Bb(τ

−ku))
G−k

a PabG
k
a

u − τ kv
. (A.1)

The goal here, and in the following, is to bring every term containing Pab into the form
BaBbG

−k
a PabG

k
a . Next, we have

[Ba(u), Bb(v)2] = Bb(v)[Ba(u), Bb(v)] + [Ba(u), Bb(v)]Bb(v)

=
∑
k∈Zn

{Bb(v)(Bb(v) + τ kBa(u) − τ kBa(τ
kv) − Bb(τ

−ku))

+ (Bb(v) + τ kBa(u) − τ kBa(τ
kv) − Bb(τ

−ku))τ kBa(τ
kv)}G

−k
a PabG

k
a

u − τ kv

=
∑
k∈Zn

{Bb(v)2 − Bb(v)Bb(τ
−ku) + τ 2kBa(u)Ba(τ

kv) − τ 2kBa(τ
kv)2

− τ kBa(τ
kv)Bb(τ

−ku) + τ kBa(u)Bb(v)

+ τ k[Ba(τ
kv), Bb(τ

−ku)] − τ k[Ba(u), Bb(v)]}G
−k
a PabG

k
a

u − τ kv
, (A.2)

and then the brackets in the final line may be evaluated by using (A.1) once more, to give,
after some manipulation of the summation indices

[Ba(u), Bb(v)2] =
∑
k∈Zn

{Bb(v)2 − Bb(v)Bb(τ
−ku) + τ 2kBa(u)Ba(τ

kv) − τ 2kBa(τ
kv)2

− τ kBa(τ
kv)Bb(τ

−ku) + τ kBa(u)Bb(v)}G
−k
a PabG

k
a

u − τ kv

−
∑

j,k∈Zn

{τ 2jBa(τ
jv) − τ 2jBa(τ

j−ku) − τ kBb(τ
k−j v)

+ τ kBb(v) + τ j+kBa(u) − τ j+kBa(τ
jv)} G

k−j
a G

j−k

b

(u − τ kv)(u − τ jv)
. (A.3)

Therefore,

[Ba(u)2, Bb(v)2] = Ba(u)[Ba(u), Bb(v)2] + [Ba(u), Bb(v)2]Ba(u)

=
∑
k∈Zn

Ba(u){Bb(v)2 − Bb(v)Bb(τ
−ku) + τ 2kBa(u)Ba(τ

kv)

− τ 2kBa(τ
kv)2 − τ kBa(τ

kv)Bb(τ
−ku) + τ kBa(u)Bb(v)}G

−k
a PabG

k
a

u − τ kv
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+
∑
k∈Zn

{Bb(v)2 − Bb(v)Bb(τ
−ku) + τ 2kBa(u)Ba(τ

kv) − τ 2kBa(τ
kv)2

− τ kBa(τ
kv)Bb(τ

−ku) + τ kBa(u)Bb(v)}τ−kBb(τ
−ku)

G−k
a PabG

k
a

u − τ kv

−
∑

j,k∈Zn

Ba(u){τ 2jBa(τ
j v) − τ 2jBa(τ

j−ku) − τ kBb(τ
k−j v)

+ τ kBb(v) + τ j+kBa(u) − τ j+kBa(τ
j v)} G

k−j
a G

j−k

b

(u − τ kv)(u − τ jv)

−
∑

j,k∈Zn

{τ 2jBa(τ
j v) − τ 2jBa(τ

j−ku) − τ kBb(τ
k−j v)

+ τ kBb(v) + τ j+kBa(u) − τ j+kBa(τ
j v)} G

k−j
a G

j−k

b

(u − τ kv)(u − τ jv)
Ba(u)

(A.4)

In the final line, we could again add commutators to move all the Ba’s to the left of the Bb’s,
but in fact it is not necessary to do so in order to evaluate

[b′(u), b′(v)] = trab[Ba(u)2, Bb(v)2]. (A.5)

Consider first those terms containing Pab. Because we avoided terms of the type BbBaBbPab

in (A.4), these all reduce to single traces: for example

trabBa(u)Bb(v)2G−k
a PabG

k
a = trabG

k
aBa(u)G−k

a Bb(v)2Pab

= trabτ
−kBa(τ

−ku)PabBa(v)2 = tr τ−kBa(τ
−ku)Ba(v)2,

where the final equality is valid because trbPab = 1. The remaining terms give products of
traces, and, after some cancellation, one finds

[b′(u), b′(v)] =
∑
k∈Zn

2τ−k

u − τ kv
tr[B(τ−ku)2, B(v)]

+
∑

j,k∈Zn

{tr τ jB(u)B(τ jv)Gk−j tr Gj−k + τ ktr B(τkv)B(u)Gk−j tr Gj−k

− tr B(u)Gk−j tr B(v)Gj−k − tr B(v)Gj−ktr B(u)Gk−j } τ k − τ j

(u − τ kv)(u − τ jv)
.

(A.6)

The first term, cubic in B, reduces, given the identity tr[M,N ] = trab[Ma,Nb]Pab and (A.3),
to∑
j,k∈Zn

{tr B(τ jv)B(u)Gj−ktr Gk−j − tr B(u)B(τ jv)Gk−j tr Gj−k

− τ−j tr B(u)Gj−ktr B(v)Gk−j + τ−j tr B(v)Gj−ktr B(u)Gk−j }
× 2τ j+k

(u − τ kv)(u − τ jv)
, (A.7)

and, on collecting terms, one has

[b′(u), b′(v)] =
∑

j,k∈Zn

{τ j tr [B(τ jv)Gk−j , B(u)] tr Gj−k

+ [tr B(v)Gj−k, tr B(u)Gk−j ]} τ j + τ k

(u − τ jv)(u − τ kv)
. (A.8)



Integrable models from twisted half-loop algebras 5507

The second commutator can be shown to vanish, and on evaluating the first one is left with

[b′(u), b′(v)] =
∑

j,k,l∈Zn

{tr B(τ−lu)Gk−l tr Gl−j − tr B(τ−lu)Gl−j tr Gk−l

+ tr B(v)Gl−j tr Gk−l − tr B(v)Gk−l tr Gl−j } (τ j + τ k) tr Gj−k

(u − τ jv)(u − τ kv)(u − τ lv)
.

(A.9)

Consider now the two terms containing B(v). After taking 1
3 , the sum over the cyclic

permutations of the dummy indices i, j, k, one finds that these reduce to∑
j,k,l∈Zn

tr B(v)Gj−k tr Gk−l tr Gl−j τ k − τ j

(u − τ jv)(u − τ kv)(u − τ lv)
(A.10)

and the coefficient of tr B(v)G−a−b tr Ga tr Gb in this sum is (with a factor 1
2 when a = b)∑

l∈Zn

τ a+l − τ b−l

(u − τ a+lv)(u − τ l−bv)(u − τ lv)
+

τ b+l − τ a−l

(u − τ b+lv)(u − τ l−av)(u − τ lv)
, (A.11)

which may be seen to vanish by using

τ a+l − τ l−b

(u − τ a+lv)(u − τ l−bv)
= 1/v

u − τ a+lv
− 1/v

u − τ l−b

and the same identity with (a ↔ b). Similar arguments hold for the B(u) terms in (A.9), and
we have, finally, that

[b′(u), b′(v)] = 0. (A.12)

It remains to show that [B(0), b′(u)] = 0. This may be seen by expanding (A.3) to leading
order in 1/u and taking the trace in space b. The elements in B(0) are the +1-eigenspace of σ ,
therefore they generate glN0

⊕ glN1
⊕ · · · ⊕ glNn−1

.

Appendix B. Proof of proposition 2.4

Let us rewrite relation (2.29) as

[Sa(u), Sb(v)] = (Sa(u) + Sb(v) − Sb(u) − Sa(v))
Pab

u − v
+

[
Sa(u) − Sb(v),

Qab

u + v

]
. (B.1)

Note that, in contrast to the previous case computed in appendix A, here the Q cannot be
moved through the S. We are now in the position to compute the bracket [Sa(u), Sb(v)2] by
again using (B.1) to bring every term containing Pab on the right-hand side into the form
SaSbPab. We find

[Sa(u), Sb(v)2] = (Sa(u)(Sa(v) + Sb(v)) − Sa(v)2 − (Sa(v) + Sb(v))Sb(u) + Sb(v)2)
Pab

u − v

+ Sa(u)
Qab

u + v
Sb(v) − Sb(v)

Qab

u + v
Sa(u) +

[
(Sa(u) − Sb(v))Sb(v),

Qab

u + v

]

+

[
Sa(v) − Sb(u) − Sa(u) + Sb(v),

ηQab

u2 − v2

]
, (B.2)

where we also used the property PabQab = ηQab = QabPab. Now we can compute
[Sa(u)2, Sb(v)2] = Sa(u)[Sa(u), Sb(v)2] + [Sa(u), Sb(v)2]Sa(u) and take the trace in spaces a
and b. It is then straightforward to show that

[s ′(u), s ′(v)] = 2

u − v
tr[S(u)2, S(v)] +

1

u + v
(tr[S(u)2, S(−v)] − tr[S(−u)2, S(v)]), (B.3)
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where we have used the symmetry relation (2.30) and, for example, the following properties:

trabSa(u)QabSb(u) = trabSa(u)QabSa(u)T = tr S(u)S(u)T (B.4)

trabQabSa(u)Sb(v)Sa(u) = trabSb(u)T Sb(v)Sb(u)T Qab = tr S(u)T S(v)S(u)T . (B.5)

Next, using the property

tr[S(x)2, S(y)] = −tr[S(y), S(x)2] = −tr[Sa(y), Sb(x)2]Pab (B.6)

and relation (B.2), we have that tr[S(x)2, S(y)] = N
x−y

tr[S(y), S(x)] =
N

x−y
tr[Sa(y), Sb(x)]Pab. Then using relation (2.29), we get tr[S(x)2, S(y)] = 0 which implies

that the RHS of (B.3) vanishes and proves that [s ′(u), s ′(v)] = 0. Finally, expanding (B.2)
to first order in 1/u and taking the trace in space b yields [S(0), tr S2] = 0. The elements in
S(0) are the +1-eigenspace of T , therefore they generate so(p, q) for η = +1 and sp(N) for
η = −1. This completes the proof of proposition 2.4.
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